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The Equivalence of the Radial Return and Mendelson Methods for 
Integrating the Classical Plasticity Equations 

 
Brett A. Bednarcyk and Jacob Aboudi 

Ohio Aerospace Institute 
Brook Park, Ohio 44142 

 
Steven M. Arnold 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 
The radial return and Mendelson methods for integrating the equations of classical plasticity, which 

appear independently in the literature, are shown to be identical. Both methods are presented in detail as 
are the specifics of their algorithmic implementation. Results illustrate the methods’ equivalence across a 
range of conditions and address the question of when the methods require iteration in order for the plastic 
state to remain on the yield surface. FORTRAN code implementations of the radial return and Mendelson 
methods are provided in the appendix. 

1. Introduction 
With the advent of modern computers and commercial finite element analysis (FEA) codes, the 

inelastic analysis of structures is economical and accessible to design engineers. Accounting for 
inelasticity is critical in today’s simulation-based design paradigm in order to capture the true nature of 
the structural response. This is particularly true in the case of aerospace structures where weight is the 
driving design parameter. Allowing local inelastic deformation of materials provided the effects of this 
deformation can be accurately modeled and shown to be safe, can increase design efficiency by 
minimizing overly conservative designs intended to stave off yielding. As such, mathematical models that 
treat inelastic deformation of materials have become increasingly important over the last 50 years. 
Obviously, metallic materials are the primary application of such models. However, polymers and other 
non-metallic materials that exhibit permanent deformation are beneficiaries of plasticity models as well. 

The basic structural problem of interest is the boundary value problem consisting of a specified 
structural geometry along with specified loading acting on the structure. The goal is to determine the 
stress, deformation, and strain distribution throughout the structure, which is accomplished through 
solution of the equilibrium equations while enforcing the boundary conditions, compatibility, and the 
constitutive relations for the material. In the general, nonlinear case, initial conditions must be specified 
and, because the problem may be time/history dependent, the solution must be accomplished through 
incremental and/or iterative methods. As mentioned above, FEA codes provide a convenient means to 
solving such problems, although many useful structural problems can still be addressed via conventional 
analytical methods. 

This paper addresses one part of the above posed general boundary value problem; namely, the 
constitutive relations for the material. Equally applicable to FEA and conventional analytical solutions, it 
will be assumed herein that the constitutive relations in question are active at a point within a structure 
and that the structure-scale solution satisfies the equilibrium equations, compatibility, and the specified 
boundary conditions. The problem of interest thus reduces to: 
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• Given an admissible specified stress/strain state at a given location 
• Determine the unspecified stress/strain components at that location 
 

For instance, in the case of FEA, it is the role of the finite element method to ensure that the equilibrium 
and compatibility equations are satisfied. At a given element integration point and a given loading step, n, 
for a given strain increment, Δε, the problem of interest becomes determination of the new stress state at 
the integration point for loading step n+1. This obviously assumes that the converged state is known 
completely at step n. 

We now further restrict ourselves to the quasi-static (i.e., non-dynamic) and small deformation 
regimes and concentrate on rate-independent classical plasticity. Classical plasticity is popular due to its 
simplicity and ease of characterization. In the case of isotropic hardening, a single stress-strain curve is all 
that is required to characterize the classical plasticity parameters. Obviously, this simplicity limits its 
accuracy, but classical plasticity does capture the first-order effects of the plastic phenomenon and is quite 
useful in many instances. Classical plasticity employs a yield function, which describes the onset of 
plasticity, and an associated flow rule, which dictates the evolution of the plastic strain components. In 
some cases, local iterations are necessary in order to ensure that the stress state remains on the yield 
surface during plastic deformation. These iterations are independent of any global iterations required to 
solve the structural problem and are needed so that the correct local stress/strain state (at a point in the 
structure) are determined. 

The algorithmic implementation of the classical plasticity equations, their integration, and the need 
for the above-mentioned local iterations are the main focus of this paper. We consider two 
sources/methods that describe classical plasticity equation integration. The first is the monograph by 
Mendelson (1968, 1983). Mendelson’s integration method has been employed by the present authors for a 
number of years in a series of non-FEA based micromechanics theories and codes for the inelastic 
response of composite materials. The second is the so-called “radial return method” (Simo and Taylor, 
1985; Simo and Hughes, 1998), which appears to be much more popular and well-known than 
Mendelson’s method. The motivation for this investigation was to determine whether some advantage 
(computational or otherwise) could be gained by employing the radial return method rather than 
Mendelson’s method, given the popularity of the former. As will be shown, such an advantage was not 
found because the methods are, in fact, equivalent. While it is not the intent of this paper to attempt to 
discern which method arose first, we note that the roots of the radial return method are generally 
attributed to Wilkins (1964). However, it appears that both methods were developed independently. 

Restricting the discussion to isotropic hardening (both linear and nonlinear), we begin by presenting 
in detail the radial return and Mendelson methods, including details of the integration algorithms. Next 
the two methods are explicitly shown to be equivalent. Note that this equivalence is summarized in 
tables 1 and 2 via side by side comparisons of the steps involved in the two methods. Results applicable 
to a monolithic (unreinforced) elastoplastic material are then presented for the two methods to indicate the 
methods’ equivalence while investigating the role of the local iteration procedure. Finally, results are 
presented for a composite material whose matrix material is treated as elastoplastic within a 
micromechanics model developed by the present authors. It should be noted that explicit nonlinear 
isotropic hardening, which was included in the radial return method by Simo and Taylor (1985), has now 
been included within the Mendelson method. Mendelson’s (1968, 1983) hardening is restricted to the 
linear and piece-wise linear cases. In addition, the FORTRAN code for the radial return and Mendelson 
methods employed for the presented monolithic results is given in the appendix. This code, with some 
modification, is suitable for incorporation within an elastoplastic structural analysis code. 
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TABLE 1.—STEP BY STEP SUMMARY COMPARISON OF THE RADIAL RETURN AND MENDELSON METHODS 
 

Step Radial return method Mendelson method 
1 Compute elastic trial stress from equation (6), 

( )1 12+ += + −T
n n n nGs s e e  

 

Compute elastic trial strain deviator (referred to as the 
modified total strain deviator by Mendelson), ′e , from 
equation (32), and the equivalent modified total strain, etε , 
from equation (37), 

1
p

n n+= −′e e ε  2
3et ij ije eε = ′ ′  

2 Check the yield criterion, equation (10).  

( )1 1 ,
2( , ) 0
3+ +κ = − κ ε =

n
T T
n n pf s s  

If 1( , ) 0+ κ <T
nf s , set 1 1+ += T

n ns s , 1+ =p p
nnε ε , and the increment 

is completed. Otherwise, continue. 

Check the yield criterion, which can be written as,  

( ) ( ),
, 0

3
np

etf
G

κ ε
κ = ε − =′e  

If ( ), 0<′f κe , set 1 2+ = ′n Gs e , 1+ =p p
nnε ε , and the increment 

is completed. Otherwise, continue. 
3 Calculate the unit normal vector,  

1 1ˆ + += T T
n nn s s  

and determine the value of tγΔ  from equation (17), 

( )11 ,
22 0
3 n

T
n pG t

++ − γΔ − κ ε =s  

In the case of linear hardening, the result is, 
( )1 ,2 3

2 2 3
n

T
n pY H

t
G H

+ − + ε
γΔ =

+

s , =
−

T

T

E E
H

E E
 

see table 2 for the nonlinear hardening case. 

Calculate the modified proportionality constant, Δ ′λ , from 
equation (52), 

( )1,
1

3
np

etG
+

κ ε
Δλ = −′

ε
 

In the case of linear hardening, the result is, 
,1 1

1 3 3
np

et

Y H
H G G

+ ε⎡ ⎤
Δλ = −′ ⎢ ⎥+ ε⎢ ⎥⎣ ⎦

 

see table 2 for the nonlinear hardening case. 

4 Compute the equivalent plastic strain at increment n+1 
from equation (6) as follows, 

1, , 2 3
n np p t
+

ε = ε + γΔ  (18) 

and the plastic strain components from equation (5) as 
follows, 

1 ˆp p
nn t+ = + γΔε ε n  (19) 

Compute the equivalent plastic strain at increment n+1 
from equation (41), 

1, ,n np p et+
ε = ε + Δλ ε′  

and the plastic strain components from equation (43) as 
follows, 

1
p p

nn+ = + Δλ′ ′ε ε e  

5 If the hardening is nonlinear, check for global 
convergence by comparing the values of 1+ns  determined 
from the yield function (1) and from the constitutive 
equation (7),  

( )11 ,
2
3 n

YF
n p ++ = κ εs  (20) 

( ) ( )1 , 1 , 1 , 1 , 12 p pC
n ij n n ij n nij ijG e e+ + + + += − ε − εs  (21) 

If 1 1+ +− >YF C
n n TOLs s  go to step 3. Note that in the case of 

linear hardening with loading that is not completely 
applied strains (i.e., blended loading), an additional 
convergence criterion is needed to ensure that the applied 

1+ns  is equal to 1+
YF
ns  and 1+

C
ns . 

 

If the hardening is nonlinear, check for global 
convergence by comparing the value of 1n+σ  determined 
from the yield function, ( )11 , 0

nn p ++σ −κ ε = , to the value of 

1n+σ  determined from the constitutive 
equation (7), 

( )11 ,n
YF
n p ++σ =κ ε  (69) 

( ) ( )1 , 1 , 1 , 1 , 1
32
2

p pC
n ij n n ij n nij ijG e e+ + + + +σ = − ε − ε  (70) 

If 1 1
YF C
n n TOL+ +σ − σ >  go to step 2. Note that in the case of 

linear hardening with loading the is not completely 
applied strains, an additional convergence criterion is 
needed to ensure that the applied 1n+σ  is equal to 1

YF
n+σ  and 

1
C
n+σ . 

6 If necessary, calculate the deviatoric stress from
equation (11) or equation (4), 

( )11 ,
2 ˆ
3 nn p ++ = κ εs n  or ( )1 1 12+ + += − p

n n nGs e ε  

If necessary, calculate the deviatoric stresses from 
equation (68) or equation (7), 

( )11 ,
2
3 nn p

et
++

′
= κ ε

ε
es  or ( )1 1 12 p

n n nG+ + += −s e ε  
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TABLE 2.—STEP BY STEP SUMMARY COMPARISON OF THE RADIAL RETURN AND MENDELSON METHOD 
PROCEDURE FOR DETERMINING γΔt  AND Δλ′  IN THE CASE OF NONLINEAR HARDENING 

NEEDED IN STEP 4 OF TABLE 1. 
 

Step Radial return method Mendelson method 
1 Calculate for iteration k,  

( )
1 1

1
, , 2 3

n n

kk k
p p t

+ +

+ε = ε + γΔ  
Calculate for iteration k,  

( )1
, 1 , 1

kk k
p n p n et
+
+ +ε = ε + Δλ ε′  

2 Calculate the derivative of the function g (with respect to 
tγΔ ), as follows (see section 2.2 for details), 

( )

( ) ( )
1

, ,

2

2 3 2 3
n n

T
n

p p

g t G t

t

+γΔ = − γΔ −

⎡ ⎤κ ε + γΔ κ ε′⎣ ⎦

s  

 

( ),
2 2
3 npg G= − κ ε −′ ′  

Calculate the derivative of the function g (with respect to 
Δλ′ ), as follows (see section 4.2 for details), 

( ) ( ) ( ), ,
1

3 n np et p
et

g G G⎡ ⎤Δλ = − κ ε + Δλ ε κ ε − Δλ′ ′ ′ ′⎣ ⎦ε
 

( ),
1
3 npg G= − κ ε −′ ′  

3 By the Newton-Raphson method,  

( ) ( )
( )

( )
1

k
k k

k

g t
t t

g t

+
⎡ ⎤γΔ⎢ ⎥⎣ ⎦γΔ = γΔ −
⎡ ⎤γΔ′ ⎢ ⎥⎣ ⎦

 

By the Newton-Raphson method,  

( ) ( )
( )

( )
1

k
k k

k

g

g
+

⎡ ⎤Δλ′⎢ ⎥⎣ ⎦Δλ = Δλ −′ ′
⎡ ⎤Δλ′ ′⎢ ⎥⎣ ⎦

 

4 If ( ) TOLkg t⎡ ⎤γΔ >⎢ ⎥⎣ ⎦
 then k → k+1, go to (1) If ( ) TOLkg ⎡ ⎤Δλ >′⎢ ⎥⎣ ⎦

 then k → k+1, go to (1) 

2. Radial Return Method 
Let us define the von Mises yield criterion with isotropic strain hardening as follows, 
 

 ( )2( , ) 0
3

κ ≡ − κ ε =pf s s  (1) 

 
where s is the deviator of the stress σ, namely, 

 

 1
3

= σ − σ δij ij kk ijs  (2) 

 
and δij  is the Kronecker delta. Note that for convenience and clarity, a mix of vector and indicial notation 
will be employed. In equation (1), the norm of s is given by, 

 
 22= =ij ijs s Js  (3) 

 
where J2 is the second invariant of s. In addition, ( )κ εp  is the isotropic strain hardening rule, which 

depends on the equivalent plastic strain: 
 

 2
3

ε = Δε = Δε Δε∫ ∫ p p
p p ij ij  (4) 

 
where ε p

ij  are the plastic strain components and Δ indicates an increment, which may accumulate between 
step n and step n+1 of the imposed loading profile. The flow rule is given by, 
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 ˆ∂
Δε = γΔ = γΔ

∂
p
ij

ij

ft t
s

n  (5) 

 
where n̂  is the unit vector, ˆ =n s s , and γΔt  is the magnitude of the plastic strain increment, which is 
in keeping with the nomenclature of Simo and Taylor (1985).  

 
Substituting equation (5) into equation (4) yields, 

 

 2
3

Δε = γΔp t  (6) 

 
The deviatoric nature of the plastic strain allows the constitutive equation for isotropic elastoplastic 

materials to be written as, 
 

 ( )2= − pGs e ε  (7) 

 
where G is the shear modulus and e is the deviator of the total strain ε, 

 

 1
3

= ε − ε δij ij kk ije  (8) 

 
According to the radial return mapping algorithm, at the current increment, n, we assume an elastic trial 
stress applicable to the next increment, n+1, 

 
 ( )1 12+ += + −T

n n n nGs s e e  (9) 
 

where 1+ne  is the deviatoric strain at the next increment. This deviatoric strain may be known exactly, as 
in the case of pure strain specified loading on the material, it may be derived from blended stress/strain 
loading on the material, or it may be passed to the plasticity model from a higher scale model such as the 
finite element method. The radial return algorithm requires that the correct 1+ne  is known or can be 
determined through a global iteration procedure. 

From the yield criterion, equation (1), if  
 

 ( ),1 1
2( , ) 0
3+ +κ = − κ ε <

n
T T
n n pf s s  (10) 

 
then no yielding occurs (i.e., the deformation is elastic) and 1 1+ += T

n ns s . Otherwise, from equations (5) 
and (7), we have, 

 

 1 1 ˆ2+ +− −⎛ ⎞= − γ⎜ ⎟⎝ ⎠Δ Δ
n n n nG

t t
s s e e n  (11) 

 
Substituting for ns  in equation (11) using equation (9) we get, 
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 1 1 ˆ2+ += − γΔT
n n G ts s n  (12) 

 
Since ˆ =n s s , we have, 1 1 ˆ+ +=n ns s n , and by substitution into equation (12), it can be shown that the 

unit normal vector n̂  can be determined in terms of the trial elastic stress 1+
T
ns  according to, 

1 1ˆ + += T T
n nn s s . This fact is key to the radial return method because it indicates that the directionality of 

the trial stress is identical to that of the converged stress, which is on the yield surface. It is therefore 
possible to return to the yield surface along this unit vector. 

By multiplying equation (1) at increment n+1 by n̂ , we obtain, 
 

 ( ), 11
2 ˆ
3 ++

⎡ ⎤
− κ ε =⎢ ⎥

⎣ ⎦
nn ps n 0  (13) 

 
Thus, from 1 1 ˆ+ +=n ns s n , it follows that, 

 

 ( ), 11
2 ˆ
3 ++ − κ ε =

nn ps n 0  (14) 

 
From equation (12), 

 

 1 1 1ˆ ˆ ˆ2 2+ + +
⎡ ⎤= − γΔ = − γΔ⎣ ⎦

T T
n n nG t G ts n s n n s  (15) 

 
Substituting equation (15) into equation (14), we obtain, 

 

 ( ), 11
2 ˆ2
3 ++

⎡ ⎤
− γΔ − κ ε =⎢ ⎥

⎣ ⎦
n

T
n pG ts n 0  (16) 

 
Hence, we will define the function ( )γΔg t  as the bracketed term in equation (16), namely, 

 

 ( ) ( )11 ,
22 0
3 ++γΔ = − γΔ − κ ε =

n
T
n pg t G ts  (17) 

 
This nonlinear equation is used to determine the value of γΔt .  

With the above equations, the formulation required to determine all variables at increment n+1 given 
their values at increment n has been completed. The radial return method can thus be summarized as 
follows (see also table 1): 

 
(1) Compute elastic trial stress from equation (6), 

 
 ( )1 12+ += + −T

n n n nGs s e e  
 

(2) Check the yield criterion, equation (10). If 1( , ) 0+ κ <T
nf s , set 1 1+ += T

n ns s , 1+ =p p
nnε ε , and the 

increment is completed. Otherwise, continue. 
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(3) Calculate the unit normal vector,  
 1 1ˆ + += T T

n nn s s  

 
and determine the value of γΔt  from equation (17). See sections 2.1 and 2.2 below for the linear and 
nonlinear hardening cases. 
 
(4) Compute the equivalent plastic strain at increment n+1 from equation (6) as follows, 
 

 
1, ,

2
3+

ε = ε + γΔ
n np p t  (18) 

 
and the plastic strain components from equation (5) as follows, 
 
 1 ˆ+ = + γΔp p

nn tε ε n  (19) 
 
(5) If the hardening is nonlinear, check for global convergence by comparing the value of 1+ns  

determined from the yield function, equation (1), to the value of 1+ns  determined from the 
constitutive equation (7). That is, the value of 1+ns  from the yield function is given by, 
 

 ( )11 ,
2
3 ++ = κ ε

n
YF
n ps  (20) 

 
and the value of 1+ns  from the constitutive equation (7) (utilizing eq. (3)) is, 
 

 ( ) ( )1 , 1 , 1 , 1 , 12+ + + + += − ε − εp pC
n ij n n ij n nij ijG e es  (21) 

 
If 1 1+ +− >YF C

n n TOLs s † go to step 3. Note that in the case of linear hardening with loading involving 

anything other than six specified strain components, an additional convergence criterion is needed to 
ensure that the applied 1+ns  is equal to 1+

YF
ns  and 1+

C
ns . 

 
(6) If necessary, calculate the deviatoric stress from equation (14) or equation (7), 

 

( )11 ,
2 ˆ
3 ++ = κ ε

nn ps n  or ( )1 1 12+ + += − p
n n nGs e ε  

2.1 Linear Hardening 

In the case of linear hardening, in which, 
 

                                                 
† It is suggested to use a TOL value that is a small fraction of 1+

C
ns , such as 1TOL 0.0000001 C

n+= s . 
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 ( )κ ε = + εp pY H  (22) 

 
where Y and H are the yield stress and hardening slope (i.e., = ∂σ ∂εpH , where σ= 3 2 ij ijs s  is the 

effective stress) in simple tension, we can readily determine the value of γΔt  from equation (17). Because 
equation (22) is linear, the function κ  at step n+1 is known exactly in terms of the value of κ  at step n, 

 
 ( ) ( )1 , 1, , ,+ +

⎡ ⎤κ ε = κ ε + ε − ε⎣ ⎦n n n np p p pH  (23) 

 
Substituting equations (22) and (18) into equation (23) yields, 

 

 ( )1 ,,
2
3+

κ ε = + ε + γΔ
n np pY H H t  (24) 

 
and substituting equation (24) into equation (17) gives, 

 

 
( )1 ,

2
3

22
3

+ − + ε
γΔ =

+

n
T
n pY H

t
G H

s
 (25) 

 
Note that the relationship between H and the actual slope (the tangent modulus, ET) of the uniaxial stress-
strain curve in the plastic region is given by, 

 =
−

T

T

E EH
E E

 (26) 

 
where E is the elastic tensile modulus. Linear hardening can also be implemented as piece-wise linear 
hardening in order to approximate nonlinear hardening. 

2.2 Nonlinear Hardening 

In the general case of nonlinear hardening the value of γΔt  is obtained from equation (17) by 
employing the Newton-Raphson algorithm as follows (see also table 2): 

 
(1) Calculate for iteration k,  
 

( )
1 1

1 1
, ,

2
3n n

kk k
p p t

+ +

+ +ε = ε + γΔ  

 
(2) Calculate the derivative of the function g (with respect to γΔt ), as follows, 

From equation (6), 
 

 
1, ,

2
3+

ε = ε + γΔ
n np p t  

 
Expanding the function κ  as a 1st-order Taylor series, 
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 ( ) ( ) ( )1, , , ,
2 2
3 3+

⎛ ⎞
κ ε = κ ε + γΔ = κ ε + γΔ κ ε′⎜ ⎟⎝ ⎠n n n np p p pt t  

 
Hence, from equation (17), 
 

 ( ) ( ) ( )1 , ,
2 22
3 3+
⎡ ⎤

γΔ = − γΔ − κ ε + γΔ κ ε′⎢ ⎥
⎣ ⎦

n n
T
n p pg t G t ts  

 
Therefore, 
 

( ),
2 2
3

= − κ ε −′ ′
npg G  

 
(3) By the Newton-Raphson method, 
 

 ( ) ( )
( )

( )
1+

⎡ ⎤γΔ⎣ ⎦γΔ = γΔ −
⎡ ⎤γΔ′ ⎣ ⎦

k
k k

k

g t
t t

g t
 

 

(4) If ( ) TOL⎡ ⎤γΔ >⎣ ⎦
kg t ‡ then k → k+1, go to (1) 

 
Let us illustrate the nonlinear hardening for the case in which the hardening function is given by, 
 

 ( ) ( )e 1− εκ ε = − −pA
p

HY
A

 (27) 

 
where Y is the yield stress in simple tension and H and A are material parameters. Elastic-perfectly plastic 
material response is obtained when H = 0 and bilinear material response (i.e., linear hardening) is 
obtained when A is small (but not zero), yielding 

 
 ( )κ ε = + εp pY H  (28) 

 
and we see that the parameter H is then the hardening slope. In the general case, H is the initial slope of 
the nonlinear portion of the material response. Finally, for large values of εp , the stress will saturate to a 

value of Y + H/A. Note that the derivative, ( ),κ ε′
np , needed in step 2 of the radial return procedure 

above, is given by, 
 

 ( ) ,
, e− ε

κ ε =′ p n
n

A
p H  (29) 

 
 
 
                                                 
‡ A small value for the Newton-Raphson tolerance, such as 0.0001, is suggested. 
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3. Mendelson Method 
Mendelson (1968) derived plastic strain – total strain plasticity relations, which enable the 

computation of the plastic strain increments from total strains without recourse to the stresses. As in the 
radial return method, it is assumed that the load is incremented from a completely known state at 
increment n to the next increment n+1, with the task being to determine the state at this next increment in 
the context of classical plasticity. The strain at the next increment can thus be written as, 

 
 1 1+ += + + Δe p p

n n nε ε ε ε  (30) 
 

where the superscript “e” refers to an elastic quantity. Subtracting the mean strain ( 3ε = εmean kk ) from 
both sides of equation (30) yields, 

 
 1 1+ += + + Δe p p

n n ne e ε ε  (31) 
 

The Mendelson method defines the modified total strain deviator associated with the increment as, 
 

 1+= −′ p
n ne e ε  (32) 

 
Combining equations (32) and (31), 

 
 1+= + Δ′ e p

ne e ε  (33) 
 

From Hooke’s law and the Prandtl-Reuss equations we have, 
 

 1
1 2 2

+
+

Δ
= =

Δλ

p
e n
n G G

s εe  (34) 

 
where Δλ  is the Prandtl-Reuss proportionality constant. Substituting equation (34) into 
equation (33), 

 

 11
2

⎛ ⎞
= + Δ′ ⎜ ⎟Δλ⎝ ⎠

p
G

e ε  (35) 

 
Multiplying both sides of equation (31) by 2/3 times itself, 

 

 
2

2 2 11
3 3 2

⎛ ⎞
= + Δε Δε′ ′ ⎜ ⎟Δλ⎝ ⎠

p p
ij ij ij ije e

G
 (36) 

 
Mendelson defines the equivalent modified total strain as, 

 

 2
3

ε = ′ ′et ij ije e  (37) 

 
which, along with equation (4) allows the following equation to be written from equation (37), 
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 11
2

⎛ ⎞
ε = + Δε⎜ ⎟Δλ⎝ ⎠et pG

 (38) 

 
We now define a modified proportional constant Δλ′  such that, 

 

 1 11
2

= +
Δλ Δλ′ G

 (39) 

 
so equation (39) can be written as, 

 
 Δε = Δλ ε′p et  (40) 

 
Then, 

 
 

1, ,+
ε = ε + Δλ ε′

n np p et  (41) 

 
and from equation (35), 

 
 Δ = Δλ′ ′pε e  (42) 

 
leading to, 

 
 1+ = + Δλ′ ′p p

nnε ε e  (43) 
 

The essential step in determining the state at the next increment n+1 has thus been reduced to the 
determination of the modified proportionality constant Δλ′ . To do so, we write the Prandtl-Reuss 
equations,  

 
 , 1+Δε = Δλp

ij nij s  (44) 

 
and multiply each side by 2/3 times itself and take the square root, 

 

 2
, 1 , 1

2 2
3 3 + +Δε Δε = Δλp p

ij n ij nij ij s s  (45) 

 
From equation (4) and the definition of the effective stress, σ  = 3 2 ij ijs s , equation (45) can be written as, 

 

 1
2
3 +Δε = Δλσp n  (46) 

 
Solving equation (46) for Δλ  and substituting into equation (38) yields, 
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 11
3

+
⎛ ⎞σ

ε = + Δε⎜ ⎟Δε⎝ ⎠
n

et p
pG

 (47) 

 
or, 

 

 1
3
+σ

Δε = ε − n
p et G

 (48) 

 
Then, substituting equation (40) into equation (48), we have, 

 

 11
3

+σ
Δλ = −′

ε
n

etG
 (49) 

 
where σ  is taken from the yield function, i.e., for linear hardening, 
 
 pY Hσ = + ε  (50) 

4. Equivalence of the Radial Return and Mendelson Methods 
It is now possible to show that the Mendelson method is exactly equivalent to the radial return 

method. First, it follows from equation (1) (and can be clearly seen by comparing equation (50) to 
equation (22)), that Mendelson’s σ  is equivalent to the function κ  in the radial return method, which 
defines the material hardening law. That is, 

 
 ( )σ = κ εp  (51) 

 
allowing equation (49) to be written as, 

 

 
( )1,ε

λ 1
3 ε

+Δ = −′ np

etG
κ

 (52) 

 
From the material elastoplastic constitutive equation (7), at the known increment n, we have, 

 
 ( )2= − p

n n nGs e ε  (53) 

 
Substituting equation (53) into equation (9) and comparing to equation (32) yields, 

 
 ( )1 12 2+ += − = ′T p

n n nG Gs e ε e  (54) 

 
and we see the equivalence between the role of the trial stress in the radial return method and the 
modified total strain deviator in the Mendelson method. The latter is, in fact, a strain-like trial quantity. 
This can be shown independently by considering equation (31) in the trial state, where the elastic strain 
deviator becomes the trial strain deviator and it is assumed that, in the trial condition, 0Δ =pε . Equation 
(31) can then be written as, 
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 1 1+ += +T p
n n ne e ε  (55) 

 
where the trial strain deviator is denoted as 1+

T
ne . Rearranging equation (55) and comparing to 

equation (32), we have, 
 

 1 1+ += − = ′T p
n n ne e ε e  (56) 

 
thus confirming that Mendelson’s modified total strain deviator is indeed a trial strain deviator in the 
sense of the radial return method. 

From equations (54), (37), and (3), 
 

 ( ) ( )1 1 1
2 6+ + +

= = = ε′ ′T T T
n ij ij ij ij etn n

s s G e e Gs  (57) 

 
which gives, 

 

 1
1
6 +ε = T

et nG
s  (58) 

 
and we see that Mendelson’s equivalent modified total strain takes on a role analogous to that of the norm 
of the trial stress in the radial return method. We also note that the radial return method unit normal, 

1 1ˆ + += T T
n nn s s , can be written in terms of Mendelson’s modified quantities using equations (54) and 

(57) as, 
 

 2ˆ
3

′
=

εet

en  (59) 

 
Substituting equation (59) into equation (52) yields, 
 

 
( )1,

1

21
3

np

T
n

+

+

κ ε
Δλ = −′

s
 (60) 

 
Comparing equation (18) with equation (41), we have, 

 

 2
3

Δλ ε = γΔ′ et t  (61) 

 
Substituting equations (58) and (60) into equation (61) gives, 

 

 
( ), 1

1
1

2 1 21
3 36

np T
nT

n
t

G
+

+
+

⎡ ⎤κ ε⎢ ⎥
− = γΔ⎢ ⎥

⎢ ⎥
⎣ ⎦

s
s

 (62) 
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Rearranging equation (62), we have, 

 

 ( ), 11
22 0
3 ++ − γΔ − κ ε =

n
T
n pG ts  (63) 

 
which is identical to the radial return method equation (17) that is employed as the consistency condition 
to determine γΔt . Note that the Mendelson method equation (43) must be equivalent to the radial return 
method equation (19), which provides another route to establishing equation (63) through the Mendelson 
method equations. Thus, with the arrival at equation (63), along with the equivalence between equations 
(18) and (41) and equations (19) and (43), it has been demonstrated that the radial return and Mendelson 
methods are indeed equivalent. In fact, Mendelson’s method may be considered a total strain formulation 
of the radial return method. Conversely, of course, the radial return method may be considered a stress 
formulation of Mendelson’s total strain method. 

A final issue to consider when evaluating the equivalence between the two methods is the two 
possible alternative approaches that may be taken in the radial return method to calculate the deviatoric 
stress for increment n+1, step 6 in the procedure summarized in section 2. The value of 1+ns  can be 
determined from equation (14), which is derived from the yield criterion, equation (1). Alternatively, 1+ns  
can be determined from the constitutive equation (53), applied at increment n+1, 

 
 ( )1 1 12+ + += − p

n n nGs e ε  (64) 

 
as both 1+ne  and 1+

p
nε  are known at this point in the procedure. As discussed in step 5 of the radial return 

method procedure, in the case of nonlinear hardening and in the case of blended stress/strain loading, 
global iteration is needed to ensure that these two values of 1+ns  are equivalent. In the context of the 
Mendelson method, it is also possible to determine the deviatoric stress components directly from the 
yield function. We first substitute equation (42) into equation (44), resulting in, 

 
 1+Δλ = Δλ′ ′ ne s  (65) 

 
and from equation (39) we have, 
 

 ( )2 1
Δλ′

Δλ =
− Δλ′G

 (66) 

 
Substituting equation (66) into equation (65) yields, 

 
 ( )1 2 1+ = − Δλ′ ′n Gs e  (67) 

 
and substituting equation (51) into equation (67), we arrive at, 
 

 ( )11 ,
2
3 ++

′
= κ ε

εnn p
et

es  (68) 

 
which enables the calculation of the stress deviator components directly from the yield function, 
analogous to equation (14) in the radial return method. 
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To summarize the Mendelson method in a form analogous to that presented in section 2 for the radial 
return method, the process is as follows (see also table 1), 

 
(1) Compute elastic trial strain deviator (referred to as the modified total strain deviator by 

Mendelson), ′e , from equation (32), 

1+= −′ p
n ne e ε  

 
and compute the equivalent modified total strain, εet , from equation (37), 
 

 2
3

ε = ′ ′et ij ije e  

 
(2) Check the yield criterion, which, from equations (10) and (58), can be written as,  
 

 ( ) ( ),
, 0

3

κ ε
κ = ε − =′ np

etf
G

e  

 
If ( ), 0κ <′f e , set 1 2+ = ′n Gs e , 1+ =p p

nnε ε , and the increment is completed. Otherwise, 
continue. 

 
(3) Calculate the modified proportionality constant, Δλ′ , from equation (52), 

 
( )1,

1
3

+
κ ε

Δλ = −′
ε

np

etG
 

 
See sections 4.1 and 4.2 below for procedures involving linear and nonlinear hardening. 

 
(4) Compute the equivalent plastic strain at increment n+1 from equation (41), 
 

 
, 1 ,+

ε = ε + Δλ ε′
n np p et  

 
and the plastic strain components from equation (43) as follows, 
 

 1+ = + Δλ′ ′p p
nnε ε e  

 
(5) If the hardening is nonlinear, check for global convergence by comparing the value of 1+σn  

determined from the yield function, ( )11 , 0
nn p ++σ −κ ε = , to the value of 1+σn  determined from 

the constitutive equation (7). That is, the value of 1+σn  from the yield function is given by, 
 

 ( )11 ,n
YF
n p ++σ =κ ε  (69) 

 
and the value of 1+σn  from the constitutive equation (4) (utilizing equation (3)) is, 
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 ( ) ( )1 , 1 , 1 , 1 , 1
32
2+ + + + +σ = − ε − εp pC

n ij n n ij n nij ijG e e  (70) 

 
If 1 1+ +σ − σ >YF C

n n TOL § go to step 2. Note that in the case of linear hardening with loading involving 
anything other than six specified strain components, an additional convergence criterion is needed to 
ensure that the applied 1+σn  is equal to 1+σYF

n  and 1+σC
n . 

 
(6) If necessary, calculate the deviatoric stresses from equation (68) or equation (7), 

 

( )1, 1 ,
2
3 nij n p

et
s

++
′

= κ ε
ε
e  or ( )1 1 12+ + += − p

n n nGs e ε  

4.1 Linear Hardening 

In the case of linear hardening, a closed-form solution exists for determining the modified 
proportionality constant, Δλ′ , for a given increment. This is analogous to the closed form solution for 
γΔt  obtained for the radial return method in section 2.1. For linear hardening within the Mendelson 
method, equations (22) and (23) are applicable. Substituting equations (22) and (41) into equation (23), 
we have, 
 ( )1, ,+

κ ε = + ε + Δλ ε′
n np p etY H H  (71) 

 
Substituting equation (71) into equation (52) yields, 

 

 ( ),
11

3 3
Δλ = − + ε − Δλ′ ′

ε np
et

HY H
G G

 (72) 

 
Solving equation (72) for Δλ′ , we arrive at, 

 

 ,1 1
1 3 3

+ ε⎡ ⎤
Δλ = −′ ⎢ ⎥+ ε⎣ ⎦

np

et

Y H
H G G

 (73) 

4.2 Nonlinear Hardening 

In the general case of nonlinear hardening the value of Δλ′  is obtained employing the Newton-
Raphson algorithm. We first write equation (52) as, 

 

 ( ) ( )1,
1 0

3
np

et
g

G
+

κ ε
Δλ = − − Δλ =′ ′

ε
 (74) 

 
The procedure is then as follows (see also table 2): 

 
(1) Calculate for iteration k,  

                                                 
§ It is suggested to use a TOL value that is a small fraction of 1+σC

n , such as ( )1TOL 0.0000001 C
n+= σ .  
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( )
1 1

1
, ,n n

kk k
p p et+ +

+ε = ε + Δλ ε′  
 

(2) Calculate the derivative of the function g (with respect to Δλ′ ), as follows, 
From equation (41), 
 
 

1, ,np p n et+
ε = ε + Δλ ε′  

 
Expanding the function κ  as a 1st-order Taylor series, 
 

 ( ) ( ) ( ) ( )1, , , ,+
κ ε = κ ε + Δλ ε = κ ε + Δλ ε κ ε′ ′ ′

np p n et p n et p n  
 
Hence, from equation (74), 
 

 ( ) ( ) ( ), ,
1 0

3
⎡ ⎤Δλ = − κ ε + Δλ ε κ ε − Δλ =′ ′ ′ ′⎣ ⎦ε p n et p n

et
g G G  

 
Therefore, 
 

( ),
1
3

= − κ ε −′ ′
npg G  

(3) By the Newton-Raphson method,  
 

( ) ( )
( )

( )
1+

⎡ ⎤Δλ′⎣ ⎦Δλ = Δλ −′ ′
⎡ ⎤Δλ′ ′⎣ ⎦

k
k k

k

g

g
 

 

(4) If ( ) TOL⎡ ⎤Δλ >′⎣ ⎦
kg ** then k → k+1, go to (1) 

5. Results and Discussion 
In order to illustrate that the radial return and Mendelson Methods, as outlined above, provide 

identical results, the two methods are compared for a number of cases and the convergence behavior of 
the methods is highlighted. For a monolithic (unreinforced) elastoplastic material, we consider both pure 
strain and blended stress/strain loading conditions for both linear and exponential isotropic hardening. 
These results were generated using the FORTRAN program provided in the appendix. In addition, results 
are presented for a composite material whose elastoplastic matrix response is modeled using the radial 
return and Mendelson methods. These results were generated by implementing the two methods within 
the High-Fidelity Generalized Method of Cells (HFGMC) micromechanics model (Aboudi et al., 2003) so 
as to represent the matrix elastoplastic response. 

In all cases, the material properties (elastic modulus, Poisson’s ratio, and yield stress, respectively) 
are given by,  

 
E = 55.16 GPa   ν = 0.3   Y = 90 MPa 

 

                                                 
** A small value for the Newton-Raphson tolerance, such as 0.0001, is suggested. 
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The material parameter, H, which corresponds to the hardening slope in the case of linear hardening (see 
eq. (22)) and the initial hardening slope in the case of exponential hardening (see eq. (27)) is taken as zero 
in the special case of elastic-perfectly plastic behavior. In all other cases, a value of H = 10 GPa is 
employed. The remaining material parameter required for exponential hardening, A, is varied in the 
results presented below.  

We begin by considering the linearly hardening, monolithic (unreinforced), elastoplastic material 
described above. Given the fact that classical plasticity is applicable to a volume element of material, the 
corresponding stress and strain components at this material point must be specified. Therefore, within the 
FORTRAN program, any combination of σ11 or ε11, σ22 or ε22, σ33 or ε33, σ23 or ε23, σ13 or ε13, and σ12 or 
ε12 may be prescribed. It should be noted that prescribing these stress and strain components within the 
computer program, often referred to as “loading” by the constitutive modeling community, is not the 
same as loading imposed on a physical boundary or surface of a structure, either in experiments or in FEA 
simulations. The first case considered involves specification of all six strain components, while all six 
stress components are unspecified and thus dictated by the elastoplastic constitutive model. Henceforth 
this loading condition will be referred to as “pure strain specification”. Note that within standard 
commercial finite element codes, this pure strain specification condition is active at the integration points 
within the elements. It is thus this type of loading condition for which the radial return method was 
originally intended. 

The normal stresses induced due to applied loading of the form ε11 = 0.02, ε22 = ε33 = – 0.01, ε23 = ε13 = 
ε12 = 0 are plotted vs. the applied ε11 in figure 1. Note that, due to the material’s isotropy, σ22 = σ33 and σ23 

= σ13 = σ12 = 0. Results are shown for cases in which the loading has been applied using both 200 and 4 
increments. As Fig. 1 indicates, results from the radial return and Mendelson methods are identical for 
both the elastic-perfectly plastic (H = 0) and linear hardening cases irrespective of the number of 
increments employed to apply the loading. Further, the number of increments has no effect on the results 
as the solution at each of the four increments matches exactly with the corresponding 200 increment 
solution. 

Figure 2 illustrates the convergence of the 4 increment, linear hardening solution shown in figure 1. 
Plotted is the effective stress at the first of the 4 increments (corresponding to an applied strain level of 
ε11 = 0.005, ε22 = ε33 = – 0.0025, ε23 = ε13 = ε12 = 0) where the effective stress, σ , has been calculated in 
three different ways. First, the yield function enables the calculation of σ  from equation (69) at each 
global iteration, m, 

 

 ( ) ( )11 , ++
⎡ ⎤σ = κ ε⎣ ⎦n

mmYF
n p  (75) 

 
Note that equation (75) can also be written from equation (20) in the radial return method where, from 
equation (1), 3 2σ = s . Second, the constitutive equation enables the calculation of σ  via 
equation (70) at each global iteration, m,  

 

 ( ) ( ) ( ) ( ) ( )1 , 1 , 1 , 1 , 1
32
2+ + + + +
⎡ ⎤ ⎡ ⎤σ = − ε − ε⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

m mm m mp pC
n ij n n ij n nij ijG e e  (76) 
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Figure 1.—Comparison of the Radial Return and Mendelson 

methods for a linearly hardening material (eq. (22)) under pure 
strain specification (applied strains: ε11 = 0.02, ε22 = ε33 = – 0.01, 
ε23 = ε13 = ε12 = 0). The induced normal stresses (σ11 and σ22 = 
σ33) are plotted vs. the applied ε11 for different values of the 
material parameter H. Note that H = 0 corresponds to the elastic-
perfectly plastic case. 
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Figure 2.—Comparison of the convergence behavior of the 

effective stress, σ , for the Radial Return and Mendelson 
methods at an applied strain level of ε11 = 0.005, ε22 = ε33 = 
– 0.0025, ε23 = ε13 = ε12 = 0 with linear hardening and H = 10 
GPa. The effective stress can be computed in three ways; from 
the material constitutive equation, from the yield function, and 
from the applied loading. All must be equal in order to ensure 
convergence. 

Pure ε specification, 
linear hardening  



NASA/TM—2006-214331 20

Note that, again, equation (76) can be written from equation (21) in the radial return method. Finally, 

from the applied loading, the effective stress can be calculated from σ  = 3 2 app app
ij ijs s , where app

ijs  

corresponds to the stress deviator components resulting from the applied loads. In terms of strains, this 
can be written, 

 

 ( ) ( ) ( ) ( ) ( )1 1
, 1 , 1 , 1 , 11

32
2

− −
+ + + ++

⎡ ⎤ ⎡ ⎤σ = − ε − ε⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

m m mm mapp p p
ij n n ij n nij ijn G e e  (77) 

 

where ( ) 0
, 1 ,

=
+ε = ε

mp p
n nij ij . In the case of pure strain specification, ( )1+σ

mapp
n  will correspond to ( ) 1

1
−

+σ
mC

n  

because the strain components, and thus the strain deviator components, ije , are specified and thus do not 
change from iteration to iteration. In general, however, this is not the case. When at least one stress 
component is specified, the strain components are redistributed as a result of accumulated plastic strain 
from iteration to iteration. Equation (77) is thus independent of equation (76) in the general case. 

As shown in figure 2, for the case of pure strain specification with linear hardening, not only does 

( )1+σ
mapp

n  = ( ) 1
1

−
+σ

mC
n , but also ( )1+σ

mC
n  = ( )1+σ

mYF
n  = ( ) 1

1
+

+σ
mC

n . That is, the effective stress calculated 

from the constitutive equation and the yield function are identical and do not change as a function of 
global iteration. Therefore, for this special case (pure strain specification with linear hardening), global 
iteration is not necessary and the results plotted in figure 1 can be obtained with one pass through the 
integration algorithms presented in sections 2 and 4. Note also in figure 2 that the radial return and 
Mendelson methods again yield identical results. 

In figure 3 results compare the radial return and Mendelson methods for the monolithic elastoplastic 
material with exponential hardening. As in figure 1, the normal stresses induced due to applied loading of 
the form ε11 = 0.02, ε22 = ε33 = – 0.01, ε23 = ε13 = ε12 = 0 are plotted versus the applied ε11 for both 200 and 
4 increments. The parameter H = 10 GPa and the value of the parameter A (see eq. (27)) is varied between 
1 (which corresponds to nearly linear hardening) and 1000. Figure 3 illustrates that, once again, the radial 
return and Mendelson methods are identical and that the results are not affected by the number of 
increments employed to apply the loading. In addition, the effect of the parameter A on the exponential 
hardening results is clearly shown. Finally, note that, since all results in figure 3 employ the same value of 
the parameter H, their initial post yield slopes are identical. 

Figure 4 shows a plot of the three effective stress values vs. global iteration number for the case of 
exponential hardening with A = 250 and 4 increments at the first increment. As was the case in figure 2, 

figure 4 shows that ( )1+σ
mapp

n  = ( ) 1
1

−
+σ

mC
n , which will always be the case in pure strain specification. 

Now, however, the effective stress values calculated from the yield function and from the constitutive 
equation do not correspond until convergence has been achieved. This is because of the nonlinear 
function employed to describe the material’s hardening behavior. Note that convergence is rapid; 1+σC

n  

and 1+σYF
n  are within 1 percent of each other after two iterations. 

Next, consider a loading condition involving specification of both stress and strain components on the 
elastoplastic material. This loading condition will be referred to as “blended specification”. The loading 
will take the form of a specified normal strain component in one direction with a stress-free condition 
specified for all other components. That is, we apply, ε11 = 0.02, σ22 = σ33 = σ23 = σ13 = σ12 = 0, which 
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Figure 3.—Comparison of the Radial Return and Mendelson 

methods for a material represented by an exponentially 
hardening material (eq. (27)) under pure strain specification 
(applied strains: ε11 = 0.02, ε22 = ε33 = – 0.01, ε23 = ε13 = ε12 = 0). 
The induced normal stresses (σ11 and σ22 = σ33) are plotted vs. 
the applied ε11 for different values of the material parameter A, 
with H = 10 GPa. 
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Figure 4.—Comparison of the convergence behavior of the 

effective stress, σ , for the Radial Return and Mendelson 
methods at an applied strain level of ε11 = 0.005, ε22 = ε33 = 
– 0.0025, ε23 = ε13 = ε12 = 0 with exponential hardening and A = 
250. The effective stress can be computed in three ways; from 
the material constitutive equation, from the yield function, and 
from the applied loading. All must be equal in order to ensure 
convergence. 

Pure ε specification, 
exp. hardening  
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simulates the state experienced by the material in a standard strain controlled tensile test. Figure 5 plots 
the stress-strain curves in the applied strain direction (i.e., σ11 vs. ε11), along with the induced normal 
strain in the unapplied direction (i.e., σ11 vs. ε22 = ε33) for a linear hardening elastoplastic material where 
the loading has been applied using 200 and 4 increments. The radial return and Mendelson methods are 
compared. As in figures 1 and 3, figure 5 shows that the radial return and Mendelson methods provide 
identical results in both the elastic-perfectly plastic (H = 0) and linear hardening cases. The number of 
increments employed also has no effect on the results. 

Figure 6 provides a plot of the global convergence behavior of the effective stress (again calculated in 
three different ways) for the first increment of the 4 increment case plotted in figure 5. As was shown in 
figures 2 and 4, the convergence of the radial return and Mendelson methods are again identical. Further, 
as was the case in figure 2, since the material hardening is linear, the effective stresses calculated from the 
yield function and from the constitutive equation are identical. However, due to the blended loading 
specification, the effective stress calculated from the applied loading is independent. This is because, in 
the case of blended specification, the strain deviator components change from iteration to iteration and 
thus equations (77) and (76) are independent. Recall that under pure strain specification, the strain 
deviator components are known exactly for a given load increment and do not change as a function of 

iteration number. In such a case, ( )1+σ
mapp

n  = ( ) 1
1

−
+σ

mC
n . The key point illustrated in figure 6 is that, 

because the yield function and constitutive equation effective stress values are identical, but not 
converged, these two effective stress values cannot be used as a measure of convergence in the case of 
linear hardening with loading other than pure strain control. Were such a measure used, both the radial 
return and Mendelson methods would converge immediately to an incorrect solution that violates the 
specified loading condition (e.g., the stress components prescribed as zero would be non-zero).  
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Figure 5.—Comparison of the Radial Return and Mendelson 

methods for a material represented by a linearly hardening 
material (eq. (22)) under blended specification (applied load: 
ε11 = 0.02, σ22 = σ33 = σ23 = σ13 = σ12 = 0). The normal strains 
(ε11 and ε22 = ε33) are plotted vs. σ11 for different values of the 
material parameter H. Note that H = 0 corresponds to the elastic-
perfectly plastic case. 
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Figure 6.—Comparison of the convergence behavior of the 

effective stress, σ , for the Radial Return and Mendelson 
methods at an applied strain level of ε11 = 0.005, σ22 = σ33 = σ23 = 
σ13 = σ12 = 0 with linear hardening and H = 10 GPa. The 
effective stress can be computed in three ways; from the material 
constitutive equation, from the yield function, and from the 
applied loading. All must be equal in order to ensure 
convergence. 

 

The radial return and Mendelson methods are compared in figure 7 in the case of blended 
specification for an exponential hardening material with a varying value of the parameter A. The specified 
loading is identical to that employed in figure 5, and 200 and 4 increments have again been used. As 
observed previously, the radial return and Mendelson methods provide identical results and the number of 
increments employed is of no consequence. In figure 8, the convergence behavior of the effective stress is 
shown for the first increment of the 4 increment case from figure 7 with A = 250. Once again, the radial 
return and Mendelson methods are identical. As was the case in figure 6, the effective stress calculated 
from the applied loading is independent of that calculated from the constitutive equation due to the 
blended specification (see eqs. (76) and (77)). Unlike figure 6, however, figure 8 indicates that, due to the 
nonlinear hardening behavior of the elastoplastic material, the effective stress calculated from the 
constitutive equation and the yield function are no longer coincident. Thus, in this case, these two 
effective stress values could be used as a measure of global convergence. 

As a final illustration of the radial return and Mendelson methods, both implementations have been 
incorporated into a micromechanics model to enable the prediction of the response of a continuous 
composite material with elastoplastic phases. The High-Fidelity Generalized Method of Cells (HFGMC) 
micromechanics model (Aboudi et. al, 2003) has been employed for this purpose. This semi-analytical 
(non-FEA) model discretizes the composite repeating unit cell geometry into an arbitrary number of 
subcells, each of which may contain a distinct, arbitrary material. HFGMC localizes an arbitrary, 
admissible combination of stress and strain components on a composite material to determine the point-
wise stresses and strains throughout the fiber and matrix constituents. These point-wise stress and strain 
components can thus be passed to a local constitutive model (such as classical plasticity) in order to 
simulate the local plastic response at each point. The local plastic strains are then homogenized by 
HFGMC to determine composite-level inelastic strains. Note that, in the linear elastic case, the HFGMC 
localization/homogenization method provides the effective thermo-elastic properties of the composite 
materials from those of the constituents. 

Blended specification, 
linear hardening  
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Figure 7.—Comparison of the Radial Return and Mendelson 

methods for a material represented by a exponentially hardening 
material (eq. (27)) under blended specification (applied load: ε11 = 
0.02, σ22 = σ33 = σ23 = σ13 = σ12 = 0). The normal strains (ε11 and ε22 

= ε33) are plotted vs. σ11 for different values of the material 
parameter A, with H = 10 GPa.  
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Figure 8.—Comparison of the convergence behavior of the effective 

stress, σ , for the Radial Return and Mendelson methods at an 
applied strain level of ε11 = 0.005, σ22 = σ33 = σ23 = σ13 = σ12 = 0 
exponential hardening and A = 250. The effective stress can be 
computed in three ways; from the material constitutive equation, 
from the yield function, and from the applied loading. All must be 
equal in order to ensure convergence. 

Blended specification, 
exp. hardening  
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The HFGMC repeating unit cell employed herein is shown in figure 9, where the fiber and matrix 
constituents are depicted in different colors. As shown, in the plane of the fiber’s cross-section, the 
repeating unit cell is discretized into 8 by 8 subcells, whereas, in the out of plane direction, the material is 
considered to be infinitely long. The matrix material’s properties E, ν, and Y are taken as those of the 
elastoplastic material considered above. The fiber material is taken to be elastic with properties given by, 

 
E = 413.7 GPa   ν = 0.2 

 
We consider blended stress/strain component specification on a 35 percent fiber volume fraction 
composite, simulating a transverse uniaxial strain controlled tensile test such that ε22 = 0.01, σ11 = σ33 = 
σ23 = σ13 = σ12 = 0. Results are shown in figure 10, where the composite stress-strain curves in the applied 
direction (i.e., σ22 vs. ε22) are plotted, along with the normal strains induced in the composite (i.e., σ22 vs. 
ε11 and σ22 vs. ε33). Three types of elastoplastic matrix materials are considered: elastic-perfectly plastic, 
linear hardening with H = 10 GPa, and exponential hardening with H = 10 GPa and A = 100. Cases 
involving 100 increments and 4 increments are considered, and the radial return and Mendelson methods 
are once again compared. First, it is clear from figure 10 that the stiff continuous fiber in the x1-direction 
restrains the composite in this direction, resulting in an induced ε11 that is significantly smaller than the 
induced ε33. Second, we see that, as in all other cases, the radial return and Mendelson methods produce 
identical results. Unlike previous results, however, the number of increments employed does have an 
effect on the predicted composite response, with the results for 4 increments slightly underpredicting the 
composite stress-strain curves. It was determined (but not shown) that for the present case, approximately 
10 increments were required to achieve good convergence of the composite level stresses and strains. 

 
 

 
 

Figure 9.—HFGMC micromechanics 
theory repeating unit cell employed to 
simulate the transverse behavior of a 
composite material. 
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Figure 10.—Comparison of the Radial Return and Mendelson 

methods utilized to simulate the matrix behavior within a 
35 percent volume fraction composite material under blended 
specification (applied load: ε22 = 0.02, σ11 = σ33 = σ23 = σ13 = σ12 = 
0; transverse loading). The normal strains (ε11, ε22, and ε33) are 
plotted vs. σ22 for linear hardening, exponential hardening, and 
elastic-perfectly plastic matrix behavior.  

 
 

Figure 11 illustrates sample convergence behavior for the composite simulations. As in figures 2, 4, 6, 
and 8, figure 11 illustrates the effective stress convergence for the first increment in the case that 
employed 4 increments. Figure 11 is further specific to the exponential hardening case from figure 10. In 
addition, because the local behavior is different at each location within the composite matrix, figure 11 is 
applicable to one particular matrix location; that specified by the red “x” in figure 9. Figure 11 shows that 
the radial return and Mendelson methods again provide identical results. Further, as was the case for the 
monolithic (unreinforced) elastoplastic material with blended specification, the effective stress calculated 
from the constitutive equation and the load/localization procedure are unique. In fact, in the case of a 
composite, because the stresses and strains are localized from the applied composite-level stresses and 
strains, the local convergence will behave in this way regardless of the form of the specified composite 
level loading. That is, the distribution of the strain components (and thus the strain deviator components, 
eij) at a given point are always free to change from iteration to iteration regardless of the form of the 
specified loading on the composite. This is because this local strain component distribution is dictated by 
the micromechanics localization, which is influenced by the state at every other point in the composite, 
each of which is at a different point along its yield function. It is also noteworthy in figure 11 that the 
convergence is considerably more gradual compared to the monolithic elastoplastic material convergence 
illustrated in figures 2, 4, 6, and 8. 
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Figure 11.—Comparison of the global convergence behavior of the 

effective stress, σ , for the Radial Return and Mendelson methods 
within a 35 percent volume fraction composite material (at the 
location indicated in figure 9) at an applied global (composite) 
strain level of ε22 = 0.0025, σ11 = σ33 = σ23 = σ13 = σ12 = 0 with 
exponential hardening and A = 100. The effective stress can be 
computed in three ways; from the material constitutive equation, 
from the yield function, and from the applied 
loading/micromechanics localization. All must be equal in order to 
ensure convergence. 

6. Conclusions 
The Mendelson (1968, 1983) and radial return (Simo and Taylor, 1985; Simo and Hughes, 1998) 

methods for the integration of the classical plasticity are equivalent. Key to recognizing this fact is the 
identification of the equivalence between the role of the trial stress in the radial return method and that of 
Mendelson’s modified total strain deviator, with the latter being a strain-like trial quantity. The 
Mendelson method may thus be thought of as a total strain formulation of the radial return method. The 
algorithmic implementation of the methods is very similar, and the results of both methods are identical. 
As such, there appears to be no advantage computationally or theoretically to one method or the other. 
The radial return method may have a conceptual advantage in that returning to the yield surface from the 
trial stress state can be visualized. The steps involved in the two methods are summarized in tables 1 and 2. 

Results for the radial return and Mendelson methods have been compared for the cases of linear and 
nonlinear isotropic hardening of a monolithic (unreinforced) elastoplastic material. The 
articulation/implementation of explicit nonlinear hardening within the Mendelson method presented 
herein is similar to that provided by Simo and Taylor (1985) for the radial return method. In addition to 
illustrating the numerical equivalence of the two integration methods (in all cases), the presented results 
focus on the effects of the type of loading (pure strain specification or blended stress/strain specification), 
number of increments employed to apply the loading, and the convergence behavior of the methods as 
local iteration is performed to ensure that the plastic state remains on the yield surface. The following 
conclusions, applicable to both the radial return and Mendelson methods, can be drawn from the 
monolithic material results presented: 
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(1) The results are independent of the number of increments used to apply the load. 
 
(2) Local iteration is not necessary in the case of pure strain specification with linear isotropic 

hardening. 
 

(3) Local iteration is necessary in the cases of blended specification or nonlinear isotropic hardening. 
 
(4) Blended specification with linear isotropic hardening represents a special case in that the effective 

stress value calculated from the constitutive equation and the yield function are identical for a 
given iteration, though not necessarily converged. These two values thus cannot be used as a 
convergence criterion in this case. In this case, the effective stress value calculated from the 
applied loading may be compared with one of the other two effective stress values to gauge 
convergence. However, employing this applied loading effective stress value in all cases to 
determine convergence may result in the performance of an extra, unnecessary iteration. 

 
(5) Pure strain specification behaves differently than blended specification because the distribution 

(i.e., proportion) of the strain components is prescribed and thus known a priori. The plasticity 
equations then need only separate each strain component into elastic and inelastic parts. In 
contrast, under blended specification, the plasticity equations can find a strain component 
distribution corresponding to a plastic state that is on the yield surface, but does not satisfy the 
specified blended loading. 

 
Results for a composite material whose elastoplastic matrix material was modeled using the radial 

return and Mendelson classical plasticity methods were also presented. The composite analysis employed 
the non-FEA High-Fidelity Generalized Method of Cells (HFGMC) micromechanics model (Aboudi et 
al., 2003) developed by the authors. Results using both integration methods were once again identical, 
however, in contrast to the monolithic material results, the number of increments employed to apply the 
loading now had an effect. Finally, because the local stresses and strains have been localized from the 
applied composite-level stresses and strains, the convergence behavior is similar to that of the monolithic 
case with blended specification and nonlinear hardening. Iteration is required regardless of the nature of 
the loading applied on the composite and the type of hardening. This fact is somewhat intuitive because 
the in situ stresses within the micromechanics representation of the composite are multi-axial and 
progress in a non-proportional way irrespective of the nature of the global composite-level loading. Thus, 
on the local level, the micromechanics problem is similar to the blended specification monolithic material 
case where the correct proportional distribution of the strain components is not known a priori. 
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Appendix 
 

Radial Return and Mendelson Methods FORTRAN Program 
 

 
!********************************************************************************************************************** 
!********************************************************************************************************************** 
 
      PROGRAM MAIN 
 
!---------------------------------------------------------------------------------------------------------------------- 
! -- Integrates the classical plasticity equations for arbitrary monotonic loading using the Radial Return and  
!    Mendelson methods for linear and exponential isotropic hardening materials 
!---------------------------------------------------------------------------------------------------------------------- 
 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 
      CHARACTER*3 :: HARDENING 
      INTEGER :: LOP(6) 
      DOUBLE PRECISION :: APPLYF(6) 
 
!---------------------------------------------------------------------------------------------------------------------- 
 
! -- Properties 
      E = 55160. 
      XNU = 0.3 
      YIELD = 90. 
      HARD = 10000. 
!      HARD = 0. 
      A = 1000. 
!      A = 0.0000001 
 
! -- 6 Components of applied loading  
! -- LOP = 1 ---> strain; LOP = 2 ---> stress 
      LOP(1) = 1 
      LOP(2) = 2 
      LOP(3) = 2 
      LOP(4) = 2 
      LOP(5) = 2 
      LOP(6) = 2 
 
      APPLYF(1) = 0.02 
      APPLYF(2) = 0. 
      APPLYF(3) = 0. 
      APPLYF(4) = 0. 
      APPLYF(5) = 0. 
      APPLYF(6) = 0. 
 
 
! -- Number of increments 
      NINC = 4 
 
!      HARDENING = 'LIN' 
      HARDENING = 'NON' 
 
      TOL_GLOBAL = 0.0000001 
      TOL_NEWTON = 0.0001 
 
      CALL RADIAL_RETURN(E, XNU, YIELD, HARD, A, LOP, APPLYF, TOL_GLOBAL, TOL_NEWTON, NINC, HARDENING) 
 
      CALL MENDELSON(E, XNU, YIELD, HARD, A, LOP, APPLYF, TOL_GLOBAL, TOL_NEWTON, NINC, HARDENING) 
   
      END 
 
!********************************************************************************************************************** 
!********************************************************************************************************************** 
 
      SUBROUTINE RADIAL_RETURN(E, XNU, YIELD, HARD, A, LOP, APPLYF, TOL_GLOBAL, TOL_NEWTON, NINC, HARDENING) 
 
!---------------------------------------------------------------------------------------------------------------------- 
! -- Integrates the classical plasticity equations for arbitrary monotonic loading 
!    using the Radial Return method 
!---------------------------------------------------------------------------------------------------------------------- 
 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 
      CHARACTER*3 :: HARDENING 
      LOGICAL :: CONVERGED 
      INTEGER :: LOP(6) 
      DOUBLE PRECISION :: APPLYF(6), APPLY(6) 
 
!---------------------------------------------------------------------------------------------------------------------- 
 
      OPEN(22, FILE='radial_return.plot', STATUS='UNKNOWN') 
      OPEN(23, FILE='radial_return.conv', STATUS='UNKNOWN') 
      OPEN(24, FILE='radial_return.out', STATUS='UNKNOWN') 
 
      WRITE(24, *) 'RADIAL RETURN METHOD OUTPUT' 
      WRITE(24, *) '---------------------------' 
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      WRITE(24, 9700) E, XNU 
      IF (HARDENING .EQ. 'LIN') THEN 
         WRITE(24, *) 'LINEAR HARDENING SELECTED' 
         WRITE(24, 9710) YIELD, HARD 
      ELSE 
         WRITE(24, *) 'EXPONENTIAL HARDENING SELECTED' 
         WRITE(24, 9720) YIELD, HARD, A 
      ENDIF 
 
      WRITE(24, 9725) LOP 
      WRITE(24, 9730) APPLYF 
      WRITE(24, 9735) NINC 
      WRITE(24, 9740) TOL_GLOBAL, TOL_NEWTON 
 
      C44 = E/(2.*(1. + XNU)) 
      BULK = E/(3.*(1. - 2*XNU)) 
 
      SQ2 = DSQRT(2.D0) 
      SQ3 = DSQRT(3.D0) 
 
 
      EPS11 = 0 
      EPS22 = 0 
      EPS33 = 0 
      EPS23 = 0 
      EPS13 = 0 
      EPS12 = 0 
 
      E11P = 0 
      E22P = 0 
      E33P = 0 
      E23P = 0 
      E13P = 0 
      E12P = 0 
 
! -- Incremental loading loop  
      DO 1000 WHILE (INC .LT. NINC) 
 
         INC = INC + 1 
 
         WRITE(23, *) 'INC = ',INC 
 
! -- Increment applied loading 
         DO I = 1, 6 
            APPLY(I) = APPLY(I) + APPLYF(I)/NINC 
         END DO 
 
 
         IGLOB = 0 
         CONVERGED = .FALSE. 
 
! -- Global iteration loop 
         DO 2000 WHILE (.NOT. CONVERGED) 
 
            IGLOB = IGLOB + 1 
 
! -- Determine stresses and strains from applied loading 
            CALL LOAD(E, XNU, C44, LOP, APPLY, EPS11, EPS22, EPS33, EPS23, EPS13, EPS12, & 
                      E11P, E22P, E33P, E23P, E13P, E12P, SEFF_LOAD) 
 
 
! -- Computation of the strain deviators [ EDij ] (This is at n+1) 
 
            EPSMEAN=(EPS11 + EPS22 + EPS33)/3 
 
            ED11 = EPS11 - EPSMEAN 
            ED22 = EPS22 - EPSMEAN 
            ED33 = EPS33 - EPSMEAN 
            ED23 = EPS23         
            ED13 = EPS13         
            ED12 = EPS12    
 
            PRESS = BULK*EPSMEAN*3. 
       
! -- Computation of the trial stress deviators (STij) 
            ST11 = 2*C44*(ED11 - E11P)             
            ST22 = 2*C44*(ED22 - E22P)             
            ST33 = 2*C44*(ED33 - E33P)             
            ST23 = 2*C44*(ED23 - E23P)             
            ST13 = 2*C44*(ED13 - E13P)             
            ST12 = 2*C44*(ED12 - E12P)             
 
! -- Computation of the unit normal vector (XNij) 
            XNORM = DSQRT(ST11**2 + ST22**2 + ST33**2 + 2*(ST23)**2 + 2*(ST13)**2 + 2*(ST12)**2) 
 
! -- Elastic case (inside initial yield surface) 
            IF (XNORM*SQ3/SQ2 .LT. YIELD) THEN 
               SIG11C = ST11 + PRESS 
               SIG22C = ST22 + PRESS 
               SIG33C = ST33 + PRESS 
               SIG23C = ST23 
               SIG13C = ST13 
               SIG12C = ST12 
               GOTO 999 
            ENDIF 
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            XN11 = ST11/XNORM 
            XN22 = ST22/XNORM 
            XN33 = ST33/XNORM 
            XN23 = ST23/XNORM 
            XN13 = ST13/XNORM 
            XN12 = ST12/XNORM 
 
 
! -- Calculate GAMMADT 
 
! -- Linear hardening 
            IF (HARDENING .EQ. 'LIN') THEN 
               GAMMADT = (XNORM - (SQ2/SQ3)*(YIELD + HARD*EPQ))/(2*C44 + 2.*HARD/3.) 
 
! -- Exponential hardening 
            ELSE 
 
               INEWT = 0 
               GAMMADT = 0.D0 
 
   10          CONTINUE 
 
               EPQ1 = EPQ + (SQ2/SQ3)*GAMMADT 
 
               XKAPPA = YIELD - (HARD/A)*(DEXP(-A*EPQ1) - 1) 
      DXKAPPA = HARD*DEXP(-A*EPQ1) 
 
               G = -(SQ2/SQ3)*XKAPPA - 2.D0*GAMMADT*DXKAPPA/3.0 + XNORM - 2.D0*C44*GAMMADT 
      DG = -2.D0*DXKAPPA/3.D0 - 2.D0*C44 
 
      GAMMADT = GAMMADT - G/DG 
 
               INEWT = INEWT + 1 
 
      IF (DABS(G) .GT. TOL_NEWTON) GOTO 10 
 
            ENDIF 
 
 
            EPQ = EPQ + (SQ2/SQ3)*GAMMADT 
 
            E11P = E11P + GAMMADT*XN11 
            E22P = E22P + GAMMADT*XN22 
            E33P = E33P + GAMMADT*XN33 
            E23P = E23P + GAMMADT*XN23 
            E13P = E13P + GAMMADT*XN13 
            E12P = E12P + GAMMADT*XN12 
 
            IF (HARDENING .EQ. 'LIN') THEN 
               XKAPPA = YIELD + HARD*EPQ 
            ELSE 
               XKAPPA = YIELD - (HARD/A)*(DEXP(-A*EPQ) - 1) 
            ENDIF 
 
! -- Calculate effective stress from constitutive eqn (= XKAPPA for convergence) 
            SEFF = 2*C44*(SQ3/SQ2)*DSQRT((ED11 - E11P)**2 + (ED22 - E22P)**2 + (ED33 - E33P)**2 + & 
                                         2*(ED23 - E23P)**2 + 2*(ED13 - E13P)**2 + 2*(ED12 - E12P)**2) 
 
            WRITE(23, 9100) IGLOB, SEFF, XKAPPA, SEFF_LOAD, EPQ 
 
! -- Global convergence check 
            CONVERGED = .TRUE. 
            IF (DABS((SEFF - XKAPPA)/SEFF) .GT. TOL_GLOBAL) CONVERGED = .FALSE. 
 
! -- Additional check based on applied loading (needed for blended loading with linear hardening) 
            IF (DABS((SEFF_LOAD - XKAPPA)/SEFF_LOAD) .GT. TOL_GLOBAL) CONVERGED = .FALSE. 
 
 
 2000    CONTINUE 
 
         S11 = (SQ2/SQ3)*XKAPPA*XN11 
         S22 = (SQ2/SQ3)*XKAPPA*XN22 
         S33 = (SQ2/SQ3)*XKAPPA*XN33 
         SIG23 = (SQ2/SQ3)*XKAPPA*XN23 
         SIG13 = (SQ2/SQ3)*XKAPPA*XN13 
         SIG12 = (SQ2/SQ3)*XKAPPA*XN12 
 
         SIG11 = S11 + PRESS 
         SIG22 = S22 + PRESS 
         SIG33 = S33 + PRESS          
  
         SIG11C = 2*C44*(ED11 - E11P) + PRESS 
         SIG22C = 2*C44*(ED22 - E22P) + PRESS 
         SIG33C = 2*C44*(ED33 - E33P) + PRESS         
         SIG23C = 2*C44*(ED23 - E23P)        
         SIG13C = 2*C44*(ED13 - E13P)        
         SIG12C = 2*C44*(ED12 - E12P)        
 
  999    WRITE(22, 9000) EPS11, SIG11C, EPS22, EPS33 
 
         WRITE(24, 9200) INC, IGLOB 
         WRITE(24, 9300) EPS11, EPS22, EPS33, EPS23, EPS13, EPS12  
         WRITE(24, 9400) E11P, E22P, E33P, E23P, E13P, E12P 
         WRITE(24, 9500) SIG11, SIG22, SIG33, SIG23, SIG13, SIG12 
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         WRITE(24, 9600) SIG11C, SIG22C, SIG33C, SIG23C, SIG13C, SIG12C 
 
 1000 CONTINUE 
 
      CLOSE(22) 
      CLOSE(23) 
      CLOSE(24) 
 
      RETURN 
 
 
!---------------------------------------------------------------------------------------------------------------------- 
 
 9000 FORMAT(4(E12.5,2X)) 
 9100 FORMAT(I3,2X,4(E12.5,2X)) 
 9200 FORMAT(//,'INCREMENT # ', I4, 6X,'     # GLOBAL ITERATIONS ',I4) 
 9300 FORMAT(' TOTAL STRAIN COMPONENTS:',/,3X,6(E12.5,1X)) 
 9400 FORMAT(' PLASTIC STRAIN COMPONENTS:',/,3X,6(E12.5,1X)) 
 9500 FORMAT(' STRESS COMPONENTS FROM YIELD FUNCTION:',/,3X,6(E12.5,1X)) 
 9600 FORMAT(' STRESS COMPONENTS FROM CONSTITUTIVE EQN:',/,3X,6(E12.5,1X)) 
 9700 FORMAT(//,' ELASTIC MATERIAL PARAMETERS:',/,3X,'ELASTIC MODULUS ',E12.5,/,3X,'POISSON RATIO    ',F7.5,/) 
 9710 FORMAT(/,' PLASTIC MATERIAL PARAMETERS:',/,3X,'YIELD STRESS    ',E12.5,/,3X,'HARDENING SLOPE ',E12.5) 
 9720 FORMAT(/,' PLASTIC MATERIAL PARAMETERS:',/,3X,'YIELD STRESS     ',E12.5,/,3X,'HARDENING SLOPE  ',E12.5,/,3X, & 
               'EXP. PARAMETER A ',E12.5) 
 9725 FORMAT(/,' APPLIED LOAD (1 = STRAIN; 2 = STRESS):',/,6(I12,1X)) 
 9730 FORMAT(5X,6(E12.5,1X)) 
 9735 FORMAT(/,' NUMBER OF INCREMENTS ',I4) 
 9740 FORMAT(/,' TOLERANCE FOR GLOBAL ITERATIONS: ',E12.5,/,' TOLERANCE FOR NEWTON-RAPHSON ITERATIONS: ',E12.5) 
 
      END 
 
!********************************************************************************************************************** 
!********************************************************************************************************************** 
 
      SUBROUTINE MENDELSON(E, XNU, YIELD, HARD, A, LOP, APPLYF, TOL_GLOBAL, TOL_NEWTON, NINC, HARDENING) 
 
!---------------------------------------------------------------------------------------------------------------------- 
! -- Integrates the classical plasticity equations for arbitrary monotonic loading 
!    using the Mendelson method 
!---------------------------------------------------------------------------------------------------------------------- 
 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 
      CHARACTER*3 :: HARDENING 
      LOGICAL :: CONVERGED 
 
      INTEGER :: LOP(6) 
      DOUBLE PRECISION :: APPLYF(6), APPLY(6) 
 
!---------------------------------------------------------------------------------------------------------------------- 
 
      OPEN(19, FILE='mendelson.plot', STATUS='UNKNOWN') 
      OPEN(20, FILE='mendelson.conv', STATUS='UNKNOWN') 
      OPEN(21, FILE='mendelson.out', STATUS='UNKNOWN') 
 
      WRITE(21, *) 'MENDELSON METHOD OUTPUT' 
      WRITE(21, *) '-----------------------' 
 
      WRITE(21, 9700) E, XNU 
      IF (HARDENING .EQ. 'LIN') THEN 
         WRITE(21, *) 'LINEAR HARDENING SELECTED' 
         WRITE(21, 9710) YIELD, HARD 
      ELSE 
         WRITE(21, *) 'EXPONENTIAL HARDENING SELECTED' 
         WRITE(21, 9720) YIELD, HARD, A 
      ENDIF 
 
      WRITE(21, 9725) LOP 
      WRITE(21, 9730) APPLYF 
      WRITE(21, 9735) NINC 
      WRITE(21, 9740) TOL_GLOBAL, TOL_NEWTON 
 
 
      C44 = E/(2.*(1. + XNU)) 
      BULK = E/(3.*(1. - 2*XNU)) 
 
      SQ2 = DSQRT(2.D0) 
      SQ3 = DSQRT(3.D0) 
 
 
      EPS11 = 0 
      EPS22 = 0 
      EPS33 = 0 
      EPS23 = 0 
      EPS13 = 0 
      EPS12 = 0 
 
      E11P = 0 
      E22P = 0 
      E33P = 0 
      E23P = 0 
      E13P = 0 
      E12P = 0 
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! -- Incremental loading loop  
      DO 1000 WHILE (INC .LT. NINC) 
 
         INC = INC + 1 
 
         WRITE(20, *) 'INC = ',INC 
 
! -- Increment applied loading 
         DO I = 1, 6 
            APPLY(I) = APPLY(I) + APPLYF(I)/NINC 
         END DO 
 
 
         IGLOB = 0 
         CONVERGED = .FALSE. 
 
! -- Global iteration loop 
         DO 2000 WHILE (.NOT. CONVERGED) 
 
            IGLOB = IGLOB + 1 
 
! -- Determine stresses and strains from applied loading 
            CALL LOAD(E, XNU, C44, LOP, APPLY, EPS11, EPS22, EPS33, EPS23, EPS13, EPS12, & 
                      E11P, E22P, E33P, E23P, E13P, E12P, SEFF_LOAD) 
 
! -- Computation of the strain deviators [ EDij ] (This is at n+1) 
 
            EPSMEAN=(EPS11 + EPS22 + EPS33)/3 
 
            ED11 = EPS11 - EPSMEAN 
            ED22 = EPS22 - EPSMEAN 
            ED33 = EPS33 - EPSMEAN 
            ED23 = EPS23         
            ED13 = EPS13         
            ED12 = EPS12    
 
            PRESS = BULK*EPSMEAN*3. 
       
! -- Computation of the modified total strain deviators (BEPTij) (= Trial strain deviators) 
            BEPT11 = ED11 - E11P 
            BEPT22 = ED22 - E22P 
            BEPT33 = ED33 - E33P 
            BEPT23 = ED23 - E23P 
            BEPT13 = ED13 - E13P 
            BEPT12 = ED12 - E12P 
 
! -- Computation of the equivalent modified total strain (bepet) 
            BEPET = (SQ2/SQ3)*DSQRT(BEPT11**2 + BEPT22**2 + BEPT33**2 + 2*(BEPT23)**2 + & 
                                    2*(BEPT13)**2 + 2*(BEPT12)**2) 
 
! -- Elastic case (inside initial yield surface) 
            IF (BEPET .LE. YIELD/(3.*C44)) THEN 
               SIG11C = 2*C44*BEPT11 + PRESS 
               SIG22C = 2*C44*BEPT22 + PRESS 
               SIG33C = 2*C44*BEPT33 + PRESS 
               SIG23C = 2*C44*BEPT23 
               SIG13C = 2*C44*BEPT13 
               SIG12C = 2*C44*BEPT12 
               GOTO 999 
            ENDIF 
 
 
! -- Calculate DLAM 
 
! -- Linear hardening 
            IF (HARDENING .EQ. 'LIN') THEN 
               DLAM = (3*C44 - (YIELD + HARD*EPQ)/BEPET)/(3*C44 + HARD) 
 
! -- Exponential hardening 
            ELSE 
 
               INEWT = 0 
               DLAM = 0.D0 
 
   10          CONTINUE 
 
               EPQ1 = EPQ + DLAM*BEPET 
 
               XKAPPA = YIELD - (HARD/A)*(DEXP(-A*EPQ1) - 1) 
             DXKAPPA = HARD*DEXP(-A*EPQ1) 
 
               G = C44 - (XKAPPA + DLAM*BEPET*DXKAPPA)/(3.*BEPET) - DLAM*C44 
       DG = -DXKAPPA/3. - C44 
             
      DLAM = DLAM - G/DG 
 
               INEWT = INEWT + 1 
 
      IF (DABS(G) .GT. TOL_NEWTON) GOTO 10 
 
            ENDIF 
 
 
            EPQ = EPQ + DLAM*BEPET 
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            E11P = E11P + DLAM*BEPT11 
            E22P = E22P + DLAM*BEPT22 
            E33P = E33P + DLAM*BEPT33 
            E23P = E23P + DLAM*BEPT23 
            E13P = E13P + DLAM*BEPT13 
            E12P = E12P + DLAM*BEPT12 
 
            IF (HARDENING .EQ. 'LIN') THEN 
               XKAPPA = YIELD + HARD*EPQ 
            ELSE 
               XKAPPA = YIELD - (HARD/A)*(DEXP(-A*EPQ) - 1) 
            ENDIF 
 
! -- Calculate effective stress from constitutive eqn (= XKAPPA for convergence) 
            SEFF = 2*C44*(SQ3/SQ2)*DSQRT((ED11 - E11P)**2 + (ED22 - E22P)**2 + (ED33 - E33P)**2 + & 
                                          2*(ED23 - E23P)**2 + 2*(ED13 - E13P)**2 + 2*(ED12 - E12P)**2) 
 
            WRITE(20, 9100) IGLOB, SEFF, XKAPPA, SEFF_LOAD, EPQ 
 
! -- Global convergence check 
            CONVERGED = .TRUE. 
            IF (DABS((SEFF - XKAPPA)/SEFF) .GT. TOL_GLOBAL) CONVERGED = .FALSE. 
 
! -- Additional check based on applied loading (needed for blended loading with linear hardening) 
            IF (DABS((SEFF_LOAD - XKAPPA)/SEFF_LOAD) .GT. TOL_GLOBAL) CONVERGED = .FALSE. 
 
 2000    CONTINUE 
 
          
         SIG11 = 2*XKAPPA*BEPT11/(3.*BEPET) + PRESS    
         SIG22 = 2*XKAPPA*BEPT22/(3.*BEPET) + PRESS    
         SIG33 = 2*XKAPPA*BEPT33/(3.*BEPET) + PRESS    
         SIG23 = 2*XKAPPA*BEPT23/(3.*BEPET)     
         SIG13 = 2*XKAPPA*BEPT13/(3.*BEPET)     
         SIG12 = 2*XKAPPA*BEPT12/(3.*BEPET)     
 
         SIG11C = 2*C44*(ED11 - E11P) + PRESS 
         SIG22C = 2*C44*(ED22 - E22P) + PRESS 
         SIG33C = 2*C44*(ED33 - E33P) + PRESS         
         SIG23C = 2*C44*(ED23 - E23P)        
         SIG13C = 2*C44*(ED13 - E13P)        
         SIG12C = 2*C44*(ED12 - E12P)   
  
 
  999    WRITE(19, 9000) EPS11, SIG11C, EPS22, EPS33 
 
         WRITE(21, 9200) INC, IGLOB 
         WRITE(21, 9300) EPS11, EPS22, EPS33, EPS23, EPS13, EPS12  
         WRITE(21, 9400) E11P, E22P, E33P, E23P, E13P, E12P 
         WRITE(21, 9500) SIG11, SIG22, SIG33, SIG23, SIG13, SIG12 
         WRITE(21, 9600) SIG11C, SIG22C, SIG33C, SIG23C, SIG13C, SIG12C 
 
 1000 CONTINUE 
 
      CLOSE(19) 
      CLOSE(20) 
      CLOSE(21) 
 
      RETURN 
 
!---------------------------------------------------------------------------------------------------------------------- 
 
 9000 FORMAT(4(E12.5,2X)) 
 9100 FORMAT(I3,2X,4(E12.5,2X)) 
 9200 FORMAT(//,'INCREMENT # ', I4, 6X,'     # GLOBAL ITERATIONS ',I4) 
 9300 FORMAT(' TOTAL STRAIN COMPONENTS:',/,3X,6(E12.5,1X)) 
 9400 FORMAT(' PLASTIC STRAIN COMPONENTS:',/,3X,6(E12.5,1X)) 
 9500 FORMAT(' STRESS COMPONENTS FROM YIELD FUNCTION:',/,3X,6(E12.5,1X)) 
 9600 FORMAT(' STRESS COMPONENTS FROM CONSTITUTIVE EQN:',/,3X,6(E12.5,1X)) 
 9700 FORMAT(//,' ELASTIC MATERIAL PARAMETERS:',/,3X,'ELASTIC MODULUS ',E12.5,/,3X,'POISSON RATIO    ',F7.5,/) 
 9710 FORMAT(/,' PLASTIC MATERIAL PARAMETERS:',/,3X,'YIELD STRESS    ',E12.5,/,3X,'HARDENING SLOPE ',E12.5) 
 9720 FORMAT(/,' PLASTIC MATERIAL PARAMETERS:',/,3X,'YIELD STRESS     ',E12.5,/,3X,'HARDENING SLOPE  ',E12.5,/,3X, & 
               'EXP. PARAMETER A ',E12.5) 
 9725 FORMAT(/,' APPLIED LOAD (1 = STRAIN; 2 = STRESS):',/,6(I12,1X)) 
 9730 FORMAT(5X,6(E12.5,1X)) 
 9735 FORMAT(/,' NUMBER OF INCREMENTS ',I4) 
 9740 FORMAT(/,' TOLERANCE FOR GLOBAL ITERATIONS: ',E12.5,/,' TOLERANCE FOR NEWTON-RAPHSON ITERATIONS: ',E12.5) 
 
      END 
 
!********************************************************************************************************************** 
!********************************************************************************************************************** 
 
      SUBROUTINE LOAD(E, XNU, C44, LOP, APPLY, EPS11, EPS22, EPS33, EPS23, EPS13, EPS12, & 
                      E11P, E22P, E33P, E23P, E13P, E12P, SEFF_LOAD) 
 
!---------------------------------------------------------------------------------------------------------------------- 
! -- Given some combination of known S and E, solves for unknown components from S = C*(E - EP) 
!---------------------------------------------------------------------------------------------------------------------- 
 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
 
      INTEGER :: LOP(6) 
      DOUBLE PRECISION :: APPLY(6), APPLY_E(6), C(3, 3), CN(3, 3), UN(3) 
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!---------------------------------------------------------------------------------------------------------------------- 
 
 
! -- Determine 3x3 normal component stiffness matrix 
      C(1, 1) = E*(1 - XNU)/(1 - XNU - 2*XNU**2) 
      C(1, 2) = E*XNU/(1 - XNU - 2*XNU**2) 
      C(1, 3) = C(1, 2) 
      C(2, 1) = C(1, 2) 
      C(2, 2) = C(1, 1) 
      C(2, 3) = C(1, 2) 
      C(3, 1) = C(1, 2) 
      C(3, 2) = C(1, 2) 
      C(3, 3) = C(1, 1) 
 
! -- Rearrange equations such that all unknowns are on r.h.s. 
      DO 230 I = 1, 3 
         IF (LOP(I) .EQ. 2) THEN 
 
            DO J = 1, 3 
               IF (J .NE. I) CN(I, J) = - C(I, J) / C(I, I) 
            END DO 
 
            CN(I, I) = 1.0 / C(I, I) 
 
! -- Cycle through other rows 
            DO 210 K = 1, 3 
               IF (K .NE. I) THEN 
 
                  DO J = 1, 3 
                     IF (J .EQ. I) THEN 
                        CN(K, J) = C(K, J) / C(I, I) 
                     ELSE 
                        CN(K, J) = C(K, J) - C(K, I) * C(I, J) / C(I, I) 
                     ENDIF 
                  END DO 
 
               ENDIF 
  210       CONTINUE 
 
! -- Reset C for next time (i.e. next specified S) 
            DO II = 1, 3 
               DO JJ = 1, 3 
                  C(II, JJ) = CN(II, JJ) 
               END DO 
            END DO 
 
         ENDIF 
  230 CONTINUE 
 
 
      APPLY_E = APPLY 
 
      IF (LOP(1) .EQ. 1) APPLY_E(1) = APPLY(1) - E11P 
      IF (LOP(2) .EQ. 1) APPLY_E(2) = APPLY(2) - E22P 
      IF (LOP(3) .EQ. 1) APPLY_E(3) = APPLY(3) - E33P 
 
! -- Solve for unknowns 
      DO I = 1, 3 
         UN(I) = 0 
         DO J = 1, 3 
            UN(I) = UN(I) + C(I, J)*APPLY_E(J) 
         END DO 
      END DO 
 
      IF (LOP(1) .EQ. 1) THEN 
         EPS11 = APPLY(1) 
         SIG11 = UN(1) 
      ELSE 
         EPS11 = UN(1) + E11P 
         SIG11 = APPLY(1) 
      ENDIF 
 
      IF (LOP(2) .EQ. 1) THEN 
         EPS22 = APPLY(2) 
         SIG22 = UN(2) 
      ELSE 
         EPS22 = UN(2) + E22P 
         SIG22 = APPLY(2) 
      ENDIF 
 
      IF (LOP(3) .EQ. 1) THEN 
         EPS33 = APPLY(3) 
         SIG33 = UN(3) 
      ELSE 
         EPS33 = UN(3) + E33P 
         SIG33 = APPLY(3) 
      ENDIF 
 
      IF (LOP(4) .EQ. 1) THEN 
         EPS23 = APPLY(4) 
         SIG23 = 2*C44*APPLY_E(4) 
      ELSE 
         EPS23 = APPLY_E(4)/(2*C44) + E23P 
         SIG23 = APPLY(4) 
      ENDIF 
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      IF (LOP(5) .EQ. 1) THEN 
         EPS13 = APPLY(5) 
         SIG13 = 2*C44*APPLY_E(5) 
      ELSE 
         EPS13 = APPLY_E(5)/(2*C44) + E13P 
         SIG13 = APPLY(5) 
      ENDIF 
 
      IF (LOP(6) .EQ. 1) THEN 
         EPS12 = APPLY(6) 
         SIG12 = 2*C44*APPLY_E(6) 
      ELSE 
         EPS12 = APPLY_E(6)/(2*C44) + E12P 
         SIG12 = APPLY(6) 
      ENDIF 
 
! -- Determine effective stress according to applied load 
      SEFF_LOAD = DSQRT((SIG11 - SIG22)**2 + (SIG22 - SIG33)**2 + (SIG11 - SIG33)**2 + & 
                        6.*(SIG23**2 + SIG13**2 + SIG12**2)) / DSQRT(2.D0) 
 
 
      RETURN 
    
      END 
 
!********************************************************************************************************************** 
!********************************************************************************************************************** 
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